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The draining of thin fluid layers between rigid or deformable surfaces has been 
extensively studied in the limit of thin films where inertial effects are of negligible 
importance. In the present investigation, which is in two parts, we shall examine the 
inertial draining of a thin fluid layer between planar parallel surfaces under the action 
of a constant normal force. This is a simple model for dropping a sheet of paper or 
a book on a table or applying a piston to a microchip. The novelty of the problem 
is that we shall consider both the inertia of the object and that of the fluid for all 
Reynolds numbers where the flow remains laminar. In  Part 1 of the study we shall 
derive a simplified Navier-Stokes equation for the general case which contains the 
dynamic equation for the motion of the object. Solutions will be presented for the 
time-dependent motion of the object and the intervening fluid in the gap for all ratios 
of object to fluid inertia in the limit of infinite Reynolds number and for small 
Reynolds numbers (Re < 10) in the limit where the time rate of change of momentum 
of the object is small compared with that of the fluid in the gap. In  Part 2, we shall 
examine the limit where time-dependent boundary layers develop along the top and 
bottom surfaces in response to the time-varying core flow and also present a new exact 
Naviel-Stokes solution for a time-dependent double-axisymmetric stagnation-point 
flow. 

1. Introduction 
The time-dependent draining of a fluid layer between solid surfaces is a common 

phenomenon that occurs in such diverse applications as the spreading of a fluid layer 
between glass plates, the draining of squeeze films between electrically or thermally 
conducting surfaces, the dropping of a book or sheet of paper on a table and a wide 
variety of problems involving lubricating layers. The vast majority of existing 
analyses have been for thin fluid layers where the Reynolds number based on gap 
height is sufficiently small for all inertia effects to be neglected, the so-called 
lubrication limit. These lubrication-theory analyses have also been applied to 
deformable boundaries such as elastohydrodynamic squeeze films (Christensen 
1962; Rohde, Whicker & Browne 1976), the draining of fluid films in suspensions 
when a small particle or droplet approaches a fluid-fluid interface (Hartland 1968, 
1969; Jones & Wilson 1978; Dimitrov & Ivanov 1978) and the time-dependent 
trapping of fluid beneath a fluid-cell membrane (Wu & Weinbaum 1982). In the two 
present papers we shall treat what might appear to be a much simpler problem, the 
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I "  

FIGURE 1. Sketch of the geometry showing the coordinate axes and dimensions. 

draining of a fluid layer between two rigid parallel planar surfaces under a constant 
applied force such as an object falling under gravity toward a plane. The important 
difference is that the present analysis will consider both the inertia of the object and 
the inertia of the fluid in the intervening gap. For mathematical simplicity the bottom 
of the object will be a plane circular disk. The fluid motion in the gap can be visualized 
as a double time-dependent axisymmetric stagnation-point flow as shown in figure 1.  

The non-dimensionalization of the governing equations for the motion of the object 
and of the intervening fluid shows that there are three important characteristic 
timescales. The viscous diffusion timescale is t, = h:/v, where h, is the initial gap 
height and v is the kinematic viscosity of the fluid. The inertial timescale is 
ti = (npa4/4 W);, where p is the density of the fluid, a is the radius of the disk and 
W is the net force acting on the object when the system is at rest: W = (m -mb) g+ F 
where m is the mass of the object, mb is the mass of fluid displaced by the object 
and F is the external force. The third timescale is t ,  = (mh,/W)t;  when there is no 
external force and buoyancy is negligible, W = mg and t, reduces to  (h,/g)i ,  which 
is the gravitational timescale for an object falling a distance h, in a vacuum. The 
characteristic diffusion time for the viscous boundary layers on the top and bottom 
boundaries to spread throughout the gap is t,, ti is the timescale for the fluid layer 
to drain in the absence of viscosity and t, characterizes the time that it would take 
the object to fall in the absence of hydrodynamic forces. A fourth timescale which 
is not independent of the others is the viscous flow time, t, = tf/td = 7c,ua4/4 Wh;. 
This characterizes the time for the fluid to drain in the absence of inertia. The 
above definition of ti gives rise to a characteristic inertial settling velocity 
V = ho/ti = 2(h,/a) ( W/npa2)k The ratios of the three characteristic timescales define 
two fundamental dimensionless groups : 

The first group is a Reynolds number based on the inertial settling velocity defined 
above and the second group is the ratio of the squares of the gravitational and inertial 
settling times. Since the mass of the fluid in the gap is m, = npa2h0, p can also be 
written as 4 ( h , / ~ ) ~  (Mlm,) ,  which is particularly convenient for defining the regimes 
of motion. 

In all applications we shall assume that the ratio h,/a is sufficiently small for the 
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edge effects near r = a to be confined to a small part ofthe total gap area and therefore 
to be unimportant in determining both the velocity and pressure distributions in the 
intervening fluid space. Even with this limitation, a rather surprising diversity of 
behaviour can be anticipated when the object is dropped from rest, determined by 
the relative ordering of the three basic timescales as expressed in the magnitudes of 
the dimensionless numbers /3 and Re just defined. For a small piston applied to a 
microchip, Re is of the order of 0.1, whereas for a book released 1 cm above a desk 
top Re is of the order of lo3 to lo4. The physically realizable range of /3 depends 
strongly on the working fluid. For a liquid m/mp is typically of the order of 1 to 10 
and therefore, if h,/a < 0.1, /3 will be small compared to unity in most situations. On 
the other hand, for air typical values of this mass ratio will be lo3 or larger. For a 
sheet of paper dropped from a height of 1 cm, /3 will be of order unity, whereas, for 
a pane of glass or a book dropped from this height, /3 will be of the order of lo2. 

The foregoing estimates are intended to provide some feeling for the regimes of 
behaviour. When t ,  @ ti or /3 @ 1, the primary force balance is between the net force 
on the object and its rate of change of momentum. The velocities and accelerations 
in the fluid gap will not be sufficient to generate a significant hydrodynamic pressure 
on the underside of the object, and it will fall almost as if it were in a vacuum. In 
the other limit t ,  << ti or << 1 ,  the net weight of the object is instantly supported 
almost entirely by the hydrodynamic pressure on its underside with the result that 
the object experiences very small accelerations compared with gravity. The contrast 
is easily illustrated by dropping a book and a piece of paper on a table, where only 
the latter exhibits a slow, hovering descent. 

It will be shown that, even when the full nonlinear inertia terms are retained in 
the governing equations for the fluid motion in the gap, the velocity field assumes 
a particularly simple radial dependence for all Reynolds numbers with the result that 
the pressure field, while not constant across the fluid layer as in lubrication or 
boundary-layer theory, is still a relatively simple quadratic function of r .  This 
simplification will make i t  possible to develop analytic solutions in various limits and, 
for the small-/3 case, present a new time-dependent exact numerical solution to the 
full Navier-Stokes equations. In  this first paper, we shall give the general formulation 
and develop analytic solutions for the inviscid limit for all values of /3 and also for 
low- but finite-Reynolds-number flows for small values of p. In  the second paper we 
shall present a new exact numerical solution to the simplified set of Navier-Stokes 
equations valid for all Reynolds numbers in the limit of small /3 and an approximate 
high-Reynolds-number solution which is valid until the boundary layers on the top 
and bottom surfaces merge. The new numerical solution is exact in the same sense 
as the axisymmetric-stagnation-point-flow problem (Homann 1936) or the rotating- 
disk problem (von KBrmiin 1921), in that the radial dependence can be factored out 
of the governing differential equations before they are numerically integrated. 

The diversity of limiting cases, the presence of time-dependent boundary layers, 
the relatively simple analytic solutions and the availability of exact numerical 
solutions make the problem an excellent one for illustrative pedagogical purposes. 
In  fact, the problem was introduced by the first author in a graduate course in viscous 
flow because of the diversity of physical behaviour illustrated by the limiting cases 
even before its simplifying mathematical features were fully realized. 
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2. General formulation 
As shown in figure 1, it is convenient to illustrate the problem as a disk of arbitrary 

thickness released from rest and falling toward a solid planar surface. The fluid gap 
is independent of r and varies only with time. Geometrical dimensions and coordinate 
axes are as shown in the figure. 

Because of the axial symmetry of the flow and the nature of the velocity boundary 
conditions, it  is evident that a stream function of the form 

$ = r2F(z, t ) ,  ( 2 )  

where u = rF,(z, t ) ,  w = -22F(z, t ) ,  (3) 
will be sufficiently general to satisfy both the continuity equation and the viscous- 
flow conditions at both z = 0 and z = h(t) for all t .  These boundary conditions are 

F = 0 ,  F,=O on z = O ,  ( 4 a ,  a )  
F = -&, F, = 0 on z = h( t ) ,  (5% b)  

where h, is the instantaneous velocity of the disk. The initial conditions are 

F = O ,  h = h , ,  h, = O  when t = O .  b ,  4 

Substituting ( 2 )  and (3 )  into the Naviedtokes equation, one obtains for the radial 

(7) 

and axial components 
1 

P 
rFzt + r e  - 2rFFzz - vrF,,, = -- p r  , 

1 
P 

- 2 4 ,  + 4FFz + 2vFZz = -- p ,  . 

It can be seen that the r dependence can be factored out of the left-hand side of (7) 
and an unknown function A(z,  t )  can be defined by 

(9) A (2, t )  = vF,,, + 2FF,, - - F,, . 
Substituting this definition of A(z,  t )  into (7) and integrating over r ,  one obtains the 
following form for the pressure 

(10) p(r ,  2, t )  = : p r 2 4 z ,  t )  +&z, t ) ,  

where B(z, t )  is an unknown function resulting from the integration. 
Equation (10) is now differentiated with respect to z and the result used in (8), 

+pr2A, + B, = - 2p( vFzz- Ft + 2FF,). (11) 

Since the right-hand side of (1 1) is independent of r ,  i t  follows that 

A, = 0, so A ( z , t )  = A(t ) ,  (12)  

and B, = - ~ ~ ( v F , , - F ~ + ~ F F , ) .  (13) 

It is evident from (10) that B(h, t )  is simply the pressure p,(t) at the centre r = 0 of 
the lower surface of the body. Thus from (10) and (12) ,  the pressure distribution on 

(14) 
this surface is 

p(r ,  h, t )  = b 2 A ( t )  +PO(+ 
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The unknown function A(t)  can be related to the instantaneous acceleration of the 
disk through a macroscopic force balance 

mh,, = - W+D(t) ,  (15) 

where W =  (m--b)g+F (16) 

and D(t) is the hydrodynamic force on the disk. An exact description of D(t) would 
require knowledge of the complete geometry of the object and the velocities and 
accelerations everywhere. In  effect one would need to know the instantaneous virtual 
mass and Basset force on the disk as determined by the entire geometry including 
the planar surface z = 0. It is clear, however, that, if h, -4 a, the velocities and 
accelerations within the fluid gap will be much larger than in the rest of the flow field, 
with the result that the major portion of the hydrodynamic force on the disk will 
be due to fluid motion in the gap, both viscous and inertial forces being considered. 
The viscous stresses do not contribute to the normal force on the disk and thus D(t)  
will be given by the approximation 

27crp(r, h, t )  dr = 3tpa4A(t)+7ca2p0(t). (17) 

Since the buoyancy force due to hydrostatic pressure variation has already been 
considered in (16), po(t)  is measured relative to a dynamic reference pressure at the 
edge of the disk, which may be treated as zero if the small drop in pressure across 
the exit expansion is neglected. This approximation is accurate to O(h,/a). One 
concludes from (14) that 

and therefore that D(t) from (17) is approximately 

p,( t )  = -4pa2A(t), (18) 

D(t)  = -+7cpa4A(t). (19) 

Substituting (19) into (15), solving for A(t )  and inserting the result in (9), one 

(20) 
4 obtains 

vFzzz+2FFzZ-e-F = -- W t t  + W).  
zt npa4 

The original boundary-value problem has thus been reduced to the solution of (20) 
subject to boundary and initial conditions (4)-(6). Equation (5a)  provides an 
independent relation coupling F and h. 

The pressure field in the gap is obtained by integrating (13), substituting this result 
in (10) and using (18). This leads to the expression 

p ( r , z , t )  = $pA(t) (r2-a2)-2p ( vFz+P-$h;+jzh F,dz). 

The second group of terms on the right-hand side of (21) vanishes at z = h(t) with 
the result that the pressure distribution on the underside of the object is always 
parabolic with maximum pressure po(t) ,  which from (15), (18) and (19) is given by 

From (21) the radial pressure gradient is constant across the gap, but the pressure 
varies with z as given by the second group of terms involving P and its derivatives. 
It is in this property that the pressure field in the present problem differs from both 
standard boundary-layer theory and thin-film-lubrication theory. 
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To cast (20)  in non-dimensional form, we need a lengthscale for z and h( t ) ,  a 
velocity scale for F and a characteristic timescale t,, which for the moment we shall 
leave unspecified. We thus define z* = z/h,, h* = h/h,, F* = F/(h,/t,) and t* = t / t , .  

Substituting these dimensionless variables in (20)  and dropping the asterisks for 
convenience, one obtains 

where Re and /3 are defined in (1) and ti is given by 

t, = (my. npa4 

The choice oft, depends on the timescale of interest. The most obvious choice is 
to use ti, but we shall show that interesting behaviour occurs on other timescales. 
In the rest of this paper we shall look into the behaviour of the solution to (23)  in 
the limit of infinite Re and in the limit of zero /3 with small but finite Re. 

3. Inviscid (infinite Re) limit 
In  the infinite Re limit, the boundary layers at z = 0 and z = h are assumed to be 

vanishingly thin and thus the viscous term in (23)  is negligible throughout the gap. 
The high- but finite-Re case will be treated in Part 2 (Lawrence, Kuang & Weinbaum 
1985). For the weight and fluid inertia forces to be of the same order, we require that 
t, = ti. Equation (23)  then reduces to 

Fzt + - 2FFz, = Phtt + 1. (25)  

The fluid motion in the gap has the form of a time-dependent inviscid axisymmetric 
stagnation-point flow, where u is independent of z and increases linearly with r.  The 
stream function II. in ( 2 )  takes the simplified form $ = r2zq5(t). Then F* = z*$*(t*), 
where $* = &, and, after dropping the asterisks, (25)  reduces to 

$ ,+$2=  Ph,,+l. (26)  

24h = -h, .  (27)  

Boundary condition (5a) becomes 

Equation (27)  can be used to eliminate 4 and its derivatives from (25) .  The resulting 
equation is 3 

(P+&) h tt --hZ;+l 4h2 = o .  

The initial conditions for (28)  are h = 1 and h, = 0. 
Equation (28)  is a nonlinear ordinary differential equation which has to be solved 

numerically in the general case. Useful asymptotic solutions can be obtained for three 
limiting cases: (a) /3 4 1 all h ;  (b) h w 1 all p ;  ( c )  /3 % 1 all h. It will be convenient 
to write (26)  and (27)  so that derivatives of h do not appear. Equation (27)  can be 

re-written - 

Substituting this result in (26)  and regrouping terms, one has 
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It is evident that: (i) if /3 = 0, (30) simplifies for all h < 1 to  

# t + # 2  = 1, 

q5t+B#Z = G ,  

and (ii) for h w 1 (short times) and all /3, (30) is approximated by 

469 

where 

(a )  Solution /3+0 limit 
The solution of (31) subject to the initial condition # = 0 is 

# ( t )  = tanht. (33) 

Substituting this result in (27) and integrating with initial condition h = 1, one 
obtains 

(34) 
1 

cosh2 t * 
h(t) = - 

The instantaneous velocity of the disk is 

tanh t 
coshZ t * 

h t = - 2 -  (35) 

The solutions for small /3, (33) and (34), describe the limit where the rate of change 
of momentum of the disk is negligible and the hydrodynamic pressure instantly 
supports its weight. From the definition of /3, the inertial contribution to the force 
balance of the fluid in the gap is much larger than that of the disk itself. 

( b )  Short-time solution (h  x 1 )  for all /3 
At very early times when the disk is near to its original position, h = 1,  the motion 
is governed by (32). The solution of (32) is of similar form to case (a), /3 < 1,  except 
that the constant B vanishes when /3 = +, with the result that separate solutions have 
to be obtained for /3 < +, /3 > f and /3 = f. The solution for /3 < f is 

# ( t )  = (i)’ tanh [(BC)!t], 

h(t) = cosh-2/B [ (BC)&t] .  (37) 

In the limit where /3 < 1, B = C = 1 and results (36) and (37) reduce to (34) and (35). 
This may seem surprising since (32) is only valid near h = 1, whereas results (34) and 
(35) are valid for all h. The explanation lies in the fact that the neglected /3 terms 
in (30) which have been approximated near h = 1 in writing (32) are always small 
i f f i g  1. 

To find a solution for /3 > f, we define a new positive constant 

and rewrite equation (32) as 
#t - D#2 = C .  
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FIGURE 2. Time dependence of h in the inviscid limit (timescale based on t , ) :  -, exact numeriod 
solution, (28); -.-.-, approximate solution for h z 1, (37) and (40); ----, analytic solution for 
small b, (34). 

The solutions of (38) and (27) are 

(40) h( t )  = cos2ID [ (CD)i t ]  . 

For /3 = a, (32) or (38) is linear and has the simple solution 

and, from (27), 

( c )  Large-#? solution 
The limiting case p $ 1  corresponds to the rate of change of momentum of the disk 
being much larger than the hydrodynamic forces. The disk falls almost as if it  were 
in a vacuum with 

t2  
h(t)  = 1 -- 

2 F  
(43) 

4. Results and discussion of the inviscid limit 
In figure 2 we have plotted the solutions for the instantaneous position of the disk 

in the inviscid limit. For /3 = 0.01 the ,8 = 0 analytic solution is indistinguishable from 
the numerical solution or the h x 1 approximation and only a single curve is shown. 
As explained previously the h x 1 approximation is actually valid for all h when /3 + 1 
since (30) reduces to (31). For /3 < + (37) provides a reasonable approximation for all 
times whereas for /3 > + the large-time behaviour of (40) is more subtle. Inspection 
of (30) shows that provided ,4h $- 1 (30) can be approximately represented by 
4t - 242 = 0. The solution for 4 thus behaves as if it were independent of h provided 
h B 1/B. Equation (38) and solution (40) are therefore valid except for small values 
of h of order 1/fl when /3 % 1. This behaviour corresponds to an object falling over 
most of the initial height h, as if it  were in a vacuum until a thin layer of fluid is 
left before contact at which time hydrodynamic forces become important. 
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FIQURE 3. Time dependence of h in the inviscid limit (timescale based on tr) : -, exact numerical 
solution, (28); -.--, approximate solution for h x 1, (37), (40) and (42). 

t 

FIGURE 4. Time dependence of disk velocity in the inviscid limit (timescale based on t e ) :  -, exact 
numerical solution, (28); -.-.-, approximate solution for h x 1, (37), (40) and (42). 

The physical significance of the results is clearer if the position and velocity of the 
disk are plotted on the dimensionless timescale t / t ,  as in figures 3 and 4. For B 4 1 
the descent of the object is arrested starting at t = 0 by the inertia of the fluid and 
the acceleration of the object is never important. The peak in the velocity results 
from the fact that as the gap narrows a smaller velocity of descent is required to 
maintain the radial velocity component and the pressure distribution on the 
underside of the disk. For /3> 1 the object accelerates until its inertia becomes 
comparable to that of the fluid in the gap and the peak velocity is achieved when 
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the hydrodynamic and applied forces balance. For /3 -g 1 this balance exists for all 
time since the inertia of the object is negligible. For /3 9 1, as noted above, 
hydrodynamic forces slow the fall of the disk only before contact. 

5. Limit of small /3 
In many applications of this theory, the rate of change of momentum of the moving 

body is negligible compared to the hydrodynamic forces, so p will be small. The 
limiting case /3 = 0 is not singular even though p is the coefficient of the highest-order 
time derivative in (23). The initial condition (6c) is superfluous because i t  is not 
independent of the other initial and boundary conditions and so will always be 
satisfied, even if the term ph,, is dropped from (23). This is demonstrated by solution 
(34) for the case of infinite Re and is also readily deduced from (28) where condition 
(5a) has been utilized and the coefficient of the h,, term is unaffected by the limit 
/3 = 0. With this approximation, (22) reduces to po(t)  = (2 W/xa2),  so the pressure on 
the underside of the body is time independent. The radial pressure gradient becomes 
a function of r only, and after separation of the r dependence, it is a constant. 

Useful approximate solutions may be obtained in three limiting cases (a )  Re 4 1, 
(b )  h x 1, (c) Re b 1 .  Case (a)  is the extension of the classical lubrication theory with 
Re = 0 to the case of small but finite Re, and is presented below. Cases (b )  and (c) 
will be included with the full numerical solution in Part 2 (Lawrence, Kuang & 
Weinbaum 1985). 

The standard lubrication theory calls for a balance between the viscous and 
radial-pressure-gradient terms in (23). This balance is achieved if t, is chosen to be 
t, = t,/Re. Introducing a new dimensionless time T = t / t ,  and stream function 
f =  Ftv/ho, one obtains 

fZ,,+1 = Re2(fzT+fi2-2ffzz). (44) 

The required solution is an expansion, asymptotic for fixed t as Re+O, in the form 

(45) 

(46) 

Relation (45) is substituted into (44) and the boundary conditions (4) and (5b) .  The 
result of the substitution must be valid for any small Re, so that the coefficients of 
each power of Re2 form independent equations. 

f(z, T ;  Re) -fob% h(T))+Re2f,(z ,h,hT)+O(Re4),  

h(T;  Re) - ho(T)+Re2h2(T) +O(Re4). 

At zero order, one obtains 
fozzz+ 1 = 0, (47) 

fo - 0, foz = 0 on z = 0, (48) 

f o z = O  on z = h ( T ) .  (49) 

fo = +hz2 - f z3 ,  (50) 

with boundary conditions 

The solution of (47)-(49) gives the lubrication-theory result 

which is a parabolic radial-velocity profile u = f rz (h-z ) .  At second order, one finds 
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with boundary conditions 
f2 = 0, f2, = 0 on z = 0, 

f,, = 0 on z =  h(T). 

(52) 

(53) 

Equations (51)-(53) have the solution 

f2 = & [ 1 0 5 h T ( ~ 4 - 2 ~ 2 h 2 ) - 2 ~ 7 + 7 ~ 6 h -  14z2h6]. (54) 

Initial condition (6a) cannot be satisfied, showing that an ‘inner’ expansion will 
be required on a shorter timescale which must be matched to (45) and (46). This is 
dealt with in the next paragraph. Substituting (46), (50) and (54) into boundary 
condition (5a)  and separating in powers of Re2 one obtains two equations for h, 

( 5 5 4  
and h, : 

(55 b)  

hOT = -1h3 6 0 ,  

h2T +;hi h2 = &ht hOT +&hi. 
Equation (55a) has the general solution 

h, = (-)’ 3 
T+C,  ’ 

which can be used to find the general solution to (55 b)  

The initial conditions (6b, c) cannot be used to find the constants C, and C, since the 
velocity profiles obtained from (50) and (54) do not satisfy the correct initial condition 
as mentioned above. 

The appropriate timescale for the inner expansion is td = Reti. Taking this value 
for t ,  in (23) and using 7 for the dimensionless short time and G for the dimensionless 
inner stream function, one obtains 

Gz,+~-22cc,,-G,,, = Re2. (58) 

7 and G are related to T and f by 7 = T/Re2, G = Re2 f. The solution is required to 
be asymptotic for fixed 7 as Re+O and of the form 

G(z,7; Re) - Re2G2(z,7)+O(Re4), (59) 

(60) 

Relations (59) and (60) are first substituted into (58), (4) and (6). To lowest order 

(61) 
in Re2 one gets 

G, = 0, G,, = O  on z =  0, (62) 

G,=O, H , = O  when t = 0 .  (6% b)  

h(7; Re) N 1 + Re2 H2(7)  + @Re4). 

G22,- G2zzz = 1 ; 

Boundary conditions ( 5 )  are now expanded in Taylor series about z = 1 and the 
coefficients of powers of Re2 are equated. This gives 

G 2 = - iH, , ,  G , , = O  on z =  1. (64a, b)  

Equations (61), (62) and (63a) have a separable solution 

4 
G, = az2 - - 44 ( 1 - cos nnz) e-nPnzT 

n odd 
(65) 
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16 
H~ = -++ z 66 ( 1  -e-n'n2r). 

n odd 

The two solutions (46) and (60) for h are both valid on the intermediate timescale 
with variable s = Reaa T provided 0 < a < 1 .  The solutions are matched by expressing 
each in terms of the variable s and requiring that the coefficients of each power of 
Re2 be equal. This gives the values 

co= 3,  c, =&. (67) 

(68) 

(69) 

Summarizing these results, one has on the long timescale 

h - ( 1  + $T)* + Re2 A[ 1 1  ( 1  + + T ) 2  + 17( 1 + $T)-f] + O(Re4), 

h, - - t( 1 + $T)+ - Re2 &[33( 1 + jT)-i + 85( 1 + 5 9 - 5 1  + O(Re4). 

On the short timescale 7 = T/Re2, 

h -  1-Re2- 7-  Z -(l-e-n2n2r)]+O(Re4), 96 
:[ n odd n6n6 

h7--Re2-  1- X 7 96 e-n2n27 ] + O p e 4 ) .  :[ n o d d n "  

The long-timescale solution satisfies the initial condition on h with error O(Re2) even 
though the stream function does not satisfy its initial condition. This means that the 
long-timescale solution is valid almost from t = 0 for small values of Re. This is shown 
in figure 5 ,  which shows the time dependence of h for different values of Re. Since 
the dimensionless times T and 7 used above differ by a factor of Re2, it is convenient 
to use the intermediate timescale f = t/ti = T/Re = 7 Re to plot the results (68)-(71), 
noting also that h, = ( l /Re )  hi. Figures 5 and 6 then show the results scaled with 
inertial time ti = (npa4/4 W)t, length h, and inertial velocity V = ho/ti. 

Figure 5 shows that the long-time expansion (68) is accurate for all time for 
Reynolds numbers up to unity. It gives a slight overshoot of the initial value of h 
by an amount & Re2. For larger Reynolds numbers, the expansion (70) must be used 
for f u p  to about 0.5 to account for the inertial resistance of the fluid to its initial 
acceleration. The matched expansions are quite accurate for Reynolds numbers up 
to 10, even though they were derived for Re << 1 .  This is because of the large 
denominator in the second term of (68) and because one only needs to use values of 
7 up to about 4Re in (70). Figure 6 shows that the matching of the expansions for 
body velocity (69) and ( 7 1 )  are less accurate than those for gap height (68) and (70) 
because expansion is a monotonic function of time, one increasing for short times and 
the other decreasing for large times, giving rise to curves with opposite slopes. One 
would expect the true velocity curve to have a smooth peak somewhat below the 
intersection of the two expansions. 

In all the cases studied the initial acceleration of the object causes an acceleration 
of the fluid in the gap. For the inviscid limit this is an acceleration of a one-dimensional 
profile whereas for the low-Reynolds-number limit this is an acceleration to a 
quasi-steady profile that changes with Re. For early times the lowest-order solution 
for the radial-velocity profile obtained from the stream-function solution (65) is the 
same as the start-up flow in a parallel-wall channel in which a constant pressure 
gradient has been applied at t = 0. At larger times the radial-velocity profile t o  O(Re2) 
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7 

FIQURE 5. Time dependence of h for small Reynolds numbers ( p  = 0 limit): -.---, small-f 
asymptotic expansion (70) ; -, large-f asymptotic expansion (68). 
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FIQURE 6. Time dependence of disk velocity for small Re ( B  = 0 limit): -.-.-, small-f 
asymptotic expansion (71) ; -, large-f asymptotic expansion (69). 

is obtained from solutions (50) and (54) and is a function of the instantaneous gap 
width and Re. These profiles are shown as a function of Re at fixed h in the upper 
half of the diagram, figure 7 (a) ,  and as a function of h (or equivalently t )  at a fixed 
Re in the lower half of the diagram, figure 7 ( b ) .  One observes that as either Re or 
h approach zero the profile becomes parabolic. 
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FIGURE 7. Velocity profiles in the limit B = 0 for small Re, (a) the dependence on Re at given 
h = 0.7. (b)  the dependence on h for given Re = 10. 

The long-time asymptotic decay of the motion is fundamentally different in the 
low-Re and the inviscid limits. In  the low-Re limit the inertial terms rapidly damp 
out due to viscosity, and the pressure field on the underside of the disk is due to a 
quasi-steady pressure viscous force balance. In  the inviscid limit the radial velocity, 
which is given by $ ( t ) r ,  from (33) approaches a constant value at any r and a 
quasi-steady-state Bernoulli pressure distribution is established on the underside of 
the disk. The fascinating observation is that this pressure distribution is the same 
in both limits, being a simple parabolic function of r .  It was this observation that 
suggested to the first author that a more general simplifying analysis leading to an 
exact numerical solution for all Re was possible. This solution and an approximate 
solution for the time-dependent development of the viscous boundary layers in the 
limit of high but finite Re are presented in Part 2 of this paper. 
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